Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(3): e0112723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349159

RESUMO

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 µM against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 µM in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 µM. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.


Assuntos
Antiprotozoários , Leishmania infantum , Leishmaniose , Parasitos , Animais , Humanos , Células Endoteliais , Leishmaniose/tratamento farmacológico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico
2.
ACS Appl Polym Mater ; 5(1): 381-390, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36686062

RESUMO

The rampant evolution of resistance in Plasmodium to all existing antimalarial drugs calls for the development of improved therapeutic compounds and of adequate targeted delivery strategies for them. Loading antimalarials in nanocarriers specifically targeted to the parasite will contribute to the administration of lower overall doses, with reduced side effects for the patient, and of higher local amounts to parasitized cells for an increased lethality toward the pathogen. Here, we report the development of dendronized hyperbranched polymers (DHPs), with capacity for antimalarial loading, that are coated with heparin for their specific targeting to red blood cells parasitized by Plasmodium falciparum. The resulting DHP-heparin complexes exhibit the intrinsic antimalarial activity of heparin, with an IC50 of ca. 400 nM, added to its specific targeting to P. falciparum-infected (vs noninfected) erythrocytes. DHP-heparin nanocarriers represent a potentially interesting contribution to the limited family of structures described so far for the loading and targeted delivery of current and future antimalarial compounds.

3.
BMC Biol ; 20(1): 197, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271358

RESUMO

BACKGROUND: By 2016, signs of emergence of Plasmodium falciparum resistance to artemisinin and partner drugs were detected in the Greater Mekong Subregion. Recently, the independent evolution of artemisinin resistance has also been reported in Africa and South America. This alarming scenario calls for the urgent development of new antimalarials with novel modes of action. We investigated the interference with protein aggregation, which is potentially toxic for the cell and occurs abundantly in all Plasmodium stages, as a hitherto unexplored drug target in the pathogen. RESULTS: Attempts to exacerbate the P. falciparum proteome's propensity to aggregation by delivering endogenous aggregative peptides to in vitro cultures of this parasite did not significantly affect their growth. In contrast, protein aggregation inhibitors clearly reduced the pathogen's viability. One such compound, the bis(styrylpyridinium) salt YAT2150, exhibited potent antiplasmodial activity with an in vitro IC50 of 90 nM for chloroquine- and artemisinin-resistant lines, arresting asexual blood parasites at the trophozoite stage, as well as interfering with the development of both sexual and hepatic forms of Plasmodium. At its IC50, this compound is a powerful inhibitor of the aggregation of the model amyloid ß peptide fragment 1-40, and it reduces the amount of aggregated proteins in P. falciparum cultures, suggesting that the underlying antimalarial mechanism consists in a generalized impairment of proteostasis in the pathogen. YAT2150 has an easy, rapid, and inexpensive synthesis, and because it fluoresces when it accumulates in its main localization in the Plasmodium cytosol, it is a theranostic agent. CONCLUSIONS: Inhibiting protein aggregation in Plasmodium significantly reduces the parasite's viability in vitro. Since YAT2150 belongs to a novel structural class of antiplasmodials with a mode of action that potentially targets multiple gene products, rapid evolution of resistance to this drug is unlikely to occur, making it a promising compound for the post-artemisinin era.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum , Agregados Proteicos , Peptídeos beta-Amiloides , Proteoma , Resistência a Medicamentos , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária Falciparum/parasitologia , Cloroquina/química , Cloroquina/farmacologia , Cloroquina/uso terapêutico
4.
J Control Release ; 331: 364-375, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497747

RESUMO

The current decline in antimalarial drug efficacy due to the evolution of resistant Plasmodium strains calls for new strategies capable of improving the bioavailability of antimalarials, especially of those whose lipophilic character imparts them a low solubility in biological fluids. Here we have designed, synthesized and characterized amphiphilic zwitterionic block copolymers forming nanoparticles capable of penetrating the intestinal epithelium that can be used for oral administration. Poly(butyl methacrylate-co-morpholinoethyl sulfobetaine methacrylate) (PBMA-MESBMA)-based nanoparticles exhibited a specific targeting to Plasmodium falciparum-infected vs. parasite-free red blood cells (74.8%/0.8% respectively), which was maintained upon encapsulation of the lipophilic antimalarial drug curcumin (82.6%/0.3%). The in vitro efficacy of curcumin upon encapsulation was maintained relative to the free compound, with an IC50 around 5 µM. In vivo assays indicated a significantly increased curcumin concentration in the blood of mice one hour after being orally fed PBMA-MESBMA-curcumin in comparison to the administration of free drug (18.7 vs. 2.1 ng/ml, respectively). At longer times, however, plasma curcumin concentration equaled between free and encapsulated drug, which was reflected in similar in vivo antimalarial activities in Plasmodium yoelii yoelii-infected mice. Microscopic analysis in blood samples of fluorescently labeled PBMA-MESBMA revealed the presence of the polymer inside P. yoelii yoelii-parasitized erythrocytes one hour after oral administration to infected animals.


Assuntos
Antimaláricos , Malária , Nanopartículas , Plasmodium yoelii , Administração Oral , Animais , Malária/tratamento farmacológico , Camundongos , Plasmodium falciparum
5.
ChemMedChem ; 16(5): 788-792, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217195

RESUMO

Multi-stage drugs have been prioritized in antimalarial drug discovery, as targeting more than one process in the Plasmodium life cycle is likely to increase efficiency, while decreasing the chances of emergence of resistance by the parasite. Herein, we disclose two novel acridine-based families of compounds that combine the structural features of primaquine and chloroquine. Compounds prepared and studied thus far retained the in vitro activity displayed by the parent drugs against the erythrocytic stages of chloroquine-sensitive and -resistant Plasmodium falciparum strains, and against the hepatic stages of Plasmodium berghei, hence acting as dual-stage antiplasmodial hits.


Assuntos
Aminoacridinas/farmacologia , Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Aminoacridinas/química , Antimaláricos/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
6.
Prog Mol Biol Transl Sci ; 173: 183-208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32711810

RESUMO

A substantive volume of research on autism spectrum disorder (ASD) has emerged in recent years adding to our understanding of the etiopathological process. Preclinical models in mice and rats have been highly instrumental in modeling and dissecting the contributions of a multitude of known genetic and environmental risk factors. However, the translation of preclinical data into suitable drug targets must overcome three critical hurdles: (i) ASD comprises a highly heterogeneous group of conditions that can markedly differ in terms of their clinical presentation and symptoms, (ii) the plethora of genetic and environmental risk factors suggests a complex, non-unitary, etiopathology, and (iii) the lack of consensus over the myriad of preclinical models, with respect to both construct validity and face validity. Against this backdrop, this Chapter traces how the endocannabinoid system (ECS) has emerged as a promising target for intervention with predictive validity. Recent supportive preclinical evidence is summarized, especially studies in mice demonstrating the emergence of ASD-like behaviors following diverse genetic or pharmacological manipulations targeting the ECS. The critical relevance of ECS to the complex pathogenesis of ASD is underscored by its multiple roles in modulating neuronal functions and shaping brain development. Finally, we argue that important lessons have been learned from the novel mouse models of ASD, which not only stimulate game-changing innovative treatments but also foster a consensual framework to integrate the diverse approaches applied in the search of novel treatments for ASD.


Assuntos
Transtorno do Espectro Autista/metabolismo , Endocanabinoides/metabolismo , Animais , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Fenótipo , Projetos de Pesquisa
7.
Artigo em Inglês | MEDLINE | ID: mdl-32284383

RESUMO

The rapid evolution of resistance in the malaria parasite to every single drug developed against it calls for the urgent identification of new molecular targets. Using a stain specific for the detection of intracellular amyloid deposits in live cells, we have detected the presence of abundant protein aggregates in Plasmodium falciparum blood stages and female gametes cultured in vitro, in the blood stages of mice infected by Plasmodium yoelii, and in the mosquito stages of the murine malaria species Plasmodium berghei Aggregated proteins could not be detected in early rings, the parasite form that starts the intraerythrocytic cycle. A proteomics approach was used to pinpoint actual aggregating polypeptides in functional P. falciparum blood stages, which resulted in the identification of 369 proteins, with roles particularly enriched in nuclear import-related processes. Five aggregation-prone short peptides selected from this protein pool exhibited different aggregation propensity according to Thioflavin-T fluorescence measurements, and were observed to form amorphous aggregates and amyloid fibrils in transmission electron microscope images. The results presented suggest that generalized protein aggregation might have a functional role in malaria parasites. Future antimalarial strategies based on the upsetting of the pathogen's proteostasis and therefore affecting multiple gene products could represent the entry to new therapeutic approaches.


Assuntos
Parasitos , Animais , Feminino , Camundongos , Plasmodium berghei , Plasmodium falciparum , Agregados Proteicos , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...